Generalized van der Waals theory for the twist elastic modulus and helical pitch of cholesterics.
نویسندگان
چکیده
We present a generalized van der Waals theory for a lyotropic cholesteric system of chiral spherocylinders based on the classical Onsager theory for hard anisometric bodies. The rods consist of a hard spherocylindrical backbone surrounded with a square-well potential to account for attractive (or soft repulsive) interactions. Long-ranged chiral interactions are described by means of a simple pseudoscalar potential which is appropriate for weak chiral forces of a predominant electrostatic origin. Based on the formalism proposed by Straley [Phys. Rev. A 14, 1835 (1976)], we derive explicit algebraic expressions for the twist elastic modulus and the cholesteric pitch for rods as a function of density and temperature. The pitch varies nonmonotonically with density, with a sharp decrease at low packing fractions and a marked increase at higher packing fractions. A similar trend is found for the temperature dependence. The unwinding of the helical pitch at high densities (or low temperatures) originates from a strong enhancement of the local nematic order and the corresponding increase in the twist elastic resistance associated with near-parallel local rod configurations. This contrasts with the commonly held view that the increase in pitch with decreasing temperature as often observed in cholesterics is due to layer formation resulting from presmectic fluctuations. The increase in pitch with increasing temperature is consistent with an entropic unwinding as the chiral interaction becomes less significant than the thermal energy. The variation of the pitch with density, temperature, and contour length is in qualitative agreement with recent experimental results on colloidal fd rods.
منابع مشابه
Non-Local Thermo-Elastic Buckling Analysis of Multi-Layer Annular/Circular Nano-Plates Based on First and Third Order Shear Deformation Theories Using DQ Method
In present study, thermo-elastic buckling analysis of multi-layer orthotropic annular/circular graphene sheets is investigated based on Eringen’s theory. The moderately thick and also thick nano-plates are considered. Using the non-local first and third order shear deformation theories, the governing equations are derived. The van der Waals interaction between the layers is simulated for multi-...
متن کاملA Modified van der Waals Mixture Theory for Associating Fluids: Application to Ternary Aqueous Mixtures
In this study a simple and general chemical association theory is introduced. The concept of infinite equilibrium model is re-examined and true mole fractions of associated species are calculated. The theory is applied to derive the distribution function of associated species. As a severe test the application of presented theory to the van der Waals mixture model is introduced in order to p...
متن کاملA Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment
In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...
متن کاملNonlinear Vibration Analysis of Embedded Multiwalled Carbon Nanotubes in Thermal Environment
In this article, based on the Euler-Bernoulli beam theory, the large-amplitude vibration of multiwalled carbon nanotubes embedded in an elastic medium is investigated. The method of incremental harmonic balance is implemented to solve the set of governing nonlinear equations coupled via the van der Waals (vdW) interlayer force. The influences of number of tube walls, the elastic medium, nanotub...
متن کاملNonlinear Vibration Analysis of Multi-Walled Carbon Nanotubes in Thermal Environment using the Nonlocal Timoshenko Beam Model
In this paper, based on the nonlocal Timoshenko beam theory, a nonlinear model is presented for the vibrational behavior of carbon nanotubes (CNTs) embedded in elastic medium in thermal environment. Using the Timoshenko beam theory and nonlocal elasticity of Eringen, the influences of rotary inertia, transverse shear deformation and small scale effect are taken into account. To model the intera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 130 23 شماره
صفحات -
تاریخ انتشار 2009